Search results for "Molybdenum oxide"
showing 10 items of 14 documents
Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization.
2020
Hole transport layers HTLs are of fundamental importance in perovskite solar cells PSCs , as they must ensure an efficient and selective hole extraction, and ohmic charge transfer to the corresponding electrodes. In p i n solar cells, the ITO HTL is usually not ohmic, and an additional interlayer such as MoO3 is usually placed in between the two materials by vacuum sublimation. In this work, we evaluated the properties of the MoO3 TaTm TaTm is the HTL N4,N4,N4 amp; 8243;,N4 amp; 8243; tetra [1,1 amp; 8242; biphenyl] 4 yl [1,1 amp; 8242; 4 amp; 8242;,1 amp; 8243; terphenyl] 4,4 amp; 8243; diamine hole extraction interface by selectively annealing either MoO3 prior to the deposition of TaTm o…
Electrodeposition and characterization of Mo oxide nanostructures
2015
Template electrodeposition has been used to grow uniform arrays of molybdenum oxide nanostructures in polycarbonate membrane. Several parameters have been investigated, like electrodeposition, time and solution pH. These parameters do not influence the nature of the deposit that always consists of mixed valence molybdenum oxides, whereas the nanostructure morphology changes with pH. In particular, at low pH (2.7), nanotubes are formed, whilst arrays of nanowires are obtained above pH 5.5. This change of morphology is likely due to H2 bubbles evolution during the electrochemical deposition, particularly occurring at low pH. It was found that fast removal of H2 bubbles through vigorous stirri…
Use of Hydrogen Molybdenum Bronze in Vacuum‐Deposited Perovskite Solar Cells
2019
Herein, the dehydration of a hydrogen molybdenum bronze (HYMoO3), converting it to molybdenum oxide (MoOX), is explored toward the development of perovskite solar cells (PSCs) for the first time. H0.11MoO3 bronze is synthesized, characterized, and deposited on indium tin oxide (ITO) under different concentrations and annealing conditions for in situ conversion into MoOX with appropriate oxygen vacancies. Vacuum‐deposited PSCs are fabricated using the as‐produced MoOX hole injection layers, achieving a power conversion efficiency of 17.3% (average) for the optimal device. The latter has its stability and reproducibility tested, proving the robustness and affordability of the developed hole t…
Solvothermal Synthesis of Molybdenum–Tungsten Oxides and Their Application for Photoelectrochemical Water Splitting
2018
Molybdenum and tungsten oxides are of interest as semiconductors for the production of clean and sustainable energy. Here we show that synergistic effects arising from a combination of noncrystalli...
Characterization of defect density states in MoOx for c-Si solar cell applications
Layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing (PDA). The density of states (DOS) distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a phothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was found to increase with PDA temperature and film thickness.
Characterization of the defect density states in MoOx for c-Si solar cell applications
2021
Thin layers of MoOx have been deposited by thermal evaporation followed by post-deposition annealing. The density of states distributions of the MoOx films were extracted deconvoluting the absorption spectra, measured by a photothermal deflection spectroscopy setup, including the small polaron contribution. Results revealed a sub-band defect distribution centered 1.1 eV below the conduction band; the amplitude of this distribution was found to increase with post-deposition annealing temperature and film thickness.
Design of Molecular Spintronics Devices Containing Molybdenum Oxide as Hole Injection Layer
2017
Nonprecious Copper‐Based Transparent Top Electrode via Seed Layer–Assisted Thermal Evaporation for High‐Performance Semitransparent n‐i‐p Perovskite …
2019
Semitransparent perovskite solar cells (ST‐PSCs) are highly attractive for applications in building‐integrated photovoltaics as well as in multijunction tandem devices. To fabricate high‐performance ST‐PSCs, suitable transparent top electrodes are strongly needed. Dielectric/metal/dielectric (DMD) multilayer structures have been shown to be promising candidates, though generally based on high‐value metals such as gold or silver, the latter causing also stability issues by reacting with perovskite. Here, a novel DMD transparent electrode based on nonprecious, less‐reactive copper is developed via thermal evaporation and used as a top anode in the fabrication of high‐performance semitranspare…
TRANSITION METAL OXIDES AS SELECTIVE CONTACTS FOR C-SI SOLAR CELLS
2021
Density of States evaluation of Molybdenum Oxide for c-Si solar cell
Silicon-based heterojunction technology (HJT) is one of the most promising candidates for high performance and low cost solar cells with world-record efficiency close to 27% in IBC architecture. The HJT exploits the excellent passivation properties of hydrogenated amorphous silicon (a-Si:H); although, the use of doped a-Si:H has drawbacks such as parasitic absorption and low-thermal budget to cope with back-end metallization. Replacing the p-type a-Si:H with molybdenum oxide (MoOx) is a viable alternative. Optimizing this hole-selective layer is needed; however information on the defect density of states (DOS), linked to oxygen vacancies is still lacking.